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\J& / ABSTRACT

We show that for mﬁiti-dimensional viscous flow computations the use of
upwind finite difference schemes can alter the natural length scales. This
false scaling is related to, but distinct from, the artificial viscosity
introduced by upwind schemes. We show that this false scaling can account for
certain non-physical solutions which have been computed for the driven cavity

v

problem.
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SIGNIFICANCE AND EXPLANATION

Several researchers have demonstrated that upwind finite difference
schemes for viscous flow computations give inaccurate solutions when compared
with centered difference schemes. A major cause of the inaccuracy is the
artificial viscosity introduced by the upwind differencing. In this paper I
show that upwind schemes can also introduce a false scaling for multi-
dimensional problems.

This is therefore another reason to avoid upwind difference schemes for

viscous flow computations.
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UPWIND DIFFERENCING, FALSE SCALING,
AND NON-PHYSICAL SOLUTIONS TO THE DRIVEN CAVITY PROBLEM

John C. Strikwerda

1. Introduction

It is widely known that the use of upwind finite difference schemes for
equations describing viscous flow can introduce substantial amounts of
artificial viscosity at high Reynolds numbers (see e.g. Bozeman and Dalton
(1973), de Vahl Davis and Mallinson (1976)). The purpose of this paper is to
show that in multi-dimensional problems upwind differencing can also alter the
natural length scales of the problem. In particular, in section 3 we show how
this false scaling can account for certain non-physical solutions which have

been computed tor the driven cavity problem.

2. False Scaling

We begin by considering a single homogeneous elliptic eguation

2 2
9%u a%u du du
(2.1) —_—f ——— 4 a +b =0
axz ayz ax oy

on a rectangular domain
0<x€<1 , 0€y<y
with u(x,y) specified on the boundary. Wwe assume that a and b are

positive constants. The upwind difference scheme for (2.1) is

Yietg T iy Y Yy e S LS Mile'S Bl S 1
sz Ay2
(2.2) . - .
i+13 ~ Vi i3+1 = Yij
+ a = +b 3y =0 ,
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Grant No. MCS~7927062.




which is the same as

adx, Yis1g T Py t Uy bay. Yij+1 = My * Y40 ]
(1 + 3 ) 3 + (1 + 3 ) 3
. Ax Ay v
(2.3)
e 075 Ml 5} RN 022 B & L NN ’
2Ax 28y ¢

Now (2.3) for a fixed value of Ax can be regarded as a central difference

approximation to

2 2
2 3% 2 3% du du
(2.4) A e+ B — + a +b = 0
ox? ay? T Jy
vhere
cz-1+iA-’5- and 82-1~o-ﬂ .
2 2
1f we change variables in (2.4) by y' = ya/B we obtain, after dividing by
02,
2 2 .
9%u 3% a du b du
(2.5) —e 2+—2§-’?+EEW’-0 .

3x2 ay' a

1f we define the Reynolds' number of (2.1) as R = 4a2 + b2 then the

Reynolds' number of (2.5) is R' = /Q;/a)z { (b/B)Z/uz, and so R' < R. This
is the effect of artificial viscosity. Moreover the rectangular region for
(2.1) has the height, or aspect ratio, of ;' and that for (2.5) is ;h/B. We
describe this change in aspect ratio as false scaling.

Thus solving (2.1) by upwind differences for given values of Ax and

Ay is equivalent to solving (2.5) by central differences, where (2.5) has
both a lower Reynolds' number and different aspect ratio than (2.1). Since i
central differencing is second-order accurate and upwind differencing is only
first-order accurate we claim that the solution to (2.2) for given A4x and
4y 1s closer to the solution of (2.5) than it is to the solution of (2.1).
This is indeed true for the equivalent one-dimensinal problem for a wide range

of parameters as is shown in the appendix.
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3. False Scaling and the Driven Cavity Problem.
We now lock at the driven-cavity problem to study the effect of the false
scaling (see Bozeman and Dalton (1973) for a description of the problem). The

equations in convective form are

2 2
u+-a-_‘2_’:-m
x oy
(3.1)
2 2
3w 3w Y dw Y
;;*;-*Rﬁs;‘xw)”

on the square 0 < x € 1, 0€<y< 1, R is the Reynolds' number and ¥ and
w are the streamfunction and vorticity, respectively. The streamfunction
and its normal derivative are specified on the boundary. The top wall, at y
= 1, moves with unit speed to the right. The other walls are fixed. Because
of the non-linearity of the sysem (3.1) it is impossible to rigorously analyze

the effect of upwind differencing, however, as a model consider

%y %
——2 + -—2—: -}
Ix dy
(3.2) .2 .2 ,
293w 2 9% V3w 3y dw
T T E TRY -

with a > 8 > 1. The constant & is taken to be greater than B since it is
assumed that the large velocity in the x-direction near the top driving wall
would give a larger contribution to the false diffusion than would the y-
components of the velocity.
As in the previous section, let
y' =3y
]

and the second equation in (3.2) becomes




which has an effective Reynolds number of R/a8 and the domain has an
effective aspect ratio of a/8 > 1.

Now the solution of equations (3.1) for a square driven cavity is
characterized by a single large central vortex for any value of R, Pan and
Acrivos (1967), Bozeman and Dalton (1973), de Vahl Davis and Mallinson (1976),
and Keller and Schreiber (1981). If the aspect ratio of the cavity is greater
than about 1.6 the solution can have (at least) two large vortices, Pan and
Acrivos (1967), Bozeman and Dalton (1973).

The use of upwind differencing for equations (3.1) can, however, give
solutions which have two large vortices for a square cavity e.g. Runchel and
wolfshtein (1969), Gupta and Manohar (1980), Shay (1981), Bozeman and Dalton
(1973). This solution for the square driven cavity is almost certainly rot
correct as shown by the careful studies of Bozeman and Dalton (1973), Keller
and Schrieber (1981), and others.

In light of the above analysis, the two vortex solution for the square
cavity can be explained as the result of false scaling which makes the
effective aspect ratio greater than 1.6. 1Indeed, the two vortex solutions for
the square cavity resemble the solutions for cavities with aspect ratio
greater than 1.6 which have been squeezed onto a square.

It should be pointed out that when upwina difference schemes are applied
to the divergence form of equation (3.1) i.e.

32m

—

ax2 dy

2

@
€

+R(§;(g¥w)-ay (g{-w))-o ,

N

the solutions exhibit only one large vortex for R 1less than 1000 (Bozeman

and Dalton (1973)). Why upwind differencing of the diverqence form of (3.1)

vy




should not exhibit the false scaling, but only the false diffusion, is not at
all clear. It could be that the false diffusion is less, or that it is
distributed more evenly between the two directions so as not to give a

noticable false scaling.

4. Conclusion

Although the analysis presented here is not completely rigorous it does
appear to be useful in explaining the origin of the particular non-physical
solutions of the driven cavity problem that have been obtained by upwind
difference schemes. The analysis highlights an additional danger of using

upwind differencing in computing viscous f£luid flow.
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Appendix

Consider the one-dimensional equivalent of (2.1),

2
(A1) 1—%-»3%’-0
dx

with 0<x<1, a>0 and u(0) =1, u(1) = 0. The upwind finite
difference scheme for (A.1) is

u -2, +u u - u,
(A.2) i41 i i1-1 +a i+lx i 0

sz

with uy =1, u, = 0 and Ax = 1/N. The scheme (A.2) is equivalent to the

central difference scheme

aAx, iv1 T Y
+ 5 ) (

u - 1,
(A.3) (1 3 1-1) +&—1+1w—1;‘-.0 »

and (A.3), for fixed Ax, can be regarded as an approximation to

2

(A.4) 029—:+a:x—u-0
dx

with 02 =1 + gei- and u(0) = 1, u(1) = 0.

2 [
We will show that for a wide range of values of a the solution of (A.2)

and (A.3) is closer to the solution of (A.4) than it is to the solution of
(A.1). This serves to justify our assertions in sections 2 and 3.
The solution to the difference equations (A.2) and (A.3) is

= (1 « (1 + an)i-N)/(l - (1 + an)-N)

(A.5) u,

and the solutions to (A.1) and (A.4) are

(A.6) utx) = (1 - ey, 0 L7
and

(A.7) ulx) = (1 - 20Xy L7

respectively, where a' = a/az.
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In Table I we show the values of (A.5), (A.6) and (A.7) for Ax = 1/20
and several values of the parameter a, at x = 1 « Ax = ,95,

Also shown are the relative errors of (A.6) and (A.7) from (A.5). This
is an inverse error analysis; given the discrete solution (A.5) we wish to
know which continuous solution (A.6) or (A.7) is the better continuous
approximation.

Note that for 1 € a € 100 (A.7), the solution of (A.4), is closer to
(A.5) than is (A.6), the solution of (A.3). On this basis we justify our
claim of section 2 that the solutions of (2.2) are closer to the solutions of
(2.5) than they are to the solutions of (2.1).

For a 2 100 the finite difference grid does not have any grid points in
the boundary layer, and it is only due to the simplicity of this example that
the solution to the finite difference scheme is close to the solution of the
differential equation. For more difficult problems such grid spacings can not
be regarded as adequate since they will not resolve any features of the

boundary layer.




Table 1

; a Ujg u(.95) rel. err. u(.95) rel. err.
From A.5 From A.6 From A.7

1.0 «07642 «07715 18 «07642 o
: 5.0 «20233 «22270 108 «20163 0.3% 3
: 10.0 «33343 .39349- 18% + 32979 1.18 ’
50.0 +71429 «91792 28y 67081 6.1% {
| 100, «83333 «99326 19% « 76035 8.8% - |
! 200, «90909 «99995 10% «81112 18
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